Cascaded Random Forest for Fast Object Detection

نویسندگان

  • Florian Baumann
  • Arne Ehlers
  • Karsten Vogt
  • Bodo Rosenhahn
چکیده

A Random Forest consists of several independent decision trees arranged in a forest. A majority vote over all trees leads to the final decision. In this paper we propose a Random Forest framework which incorporates a cascade structure consisting of several stages together with a bootstrap approach. By introducing the cascade, 99% of the test images can be rejected by the first and second stage with minimal computational effort leading to a massively speeded-up detection framework. Three different cascade voting strategies are implemented and evaluated. Additionally, the training and classification speed-up is analyzed. Several experiments on public available datasets for pedestrian detection, lateral car detection and unconstrained face detection demonstrate the benefit of our contribution.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Pedestrian Detection by Cascaded Random Forest with Dominant Orientation Templates

In this paper, we present a new pedestrian detection method combining Random Forest and Dominant Orientation Templates(DOT) to achieve state-of-the-art accuracy and, more importantly, to accelerate run-time speed. DOT can be considered as a binary version of Histogram of Oriented Gradients(HOG) and therefore provides time-efficient properties. However, since discarding magnitude information, it...

متن کامل

Fast Unsupervised Automobile Insurance Fraud Detection Based on Spectral Ranking of Anomalies

Collecting insurance fraud samples is costly and if performed manually is very time consuming. This issue suggests usage of unsupervised models. One of the accurate methods in this regards is Spectral Ranking of Anomalies (SRA) that is shown to work better than other methods for auto insurance fraud detection specifically. However, this approach is not scalable to large samples and is not appro...

متن کامل

Object Class Detection and Classification using Multi Scale Gradient and Corner Point based Shape Descriptors

This paper presents a novel multi scale gradient and a corner point based shape descriptors. The novel multi scale gradient based shape descriptor is combined with generic Fourier descriptors to extract contour and region based shape information. Shape information based object class detection and classification technique with a random forest classifier has been optimized. Proposed integrated de...

متن کامل

Cascaded Face Alignment via Intimacy Definition Feature

In this paper, we present a fast cascaded regression for face alignment, via a novel local feature. Our proposed local lightweight feature, namely intimacy definition feature (IDF), is more discriminative than landmark shape-indexed feature, more efficient than the handcrafted scale-invariant feature transform (SIFT) feature, and more compact than the local binary feature (LBF). Experimental re...

متن کامل

CURFIL: A GPU Library for Image Labeling with Random Forests

Random forests are popular classifiers for computer vision tasks such as image labeling or object detection. Learning random forests on large datasets, however, is computationally demanding. Slow learning impedes model selection and scientific research on image features. We present an open-source implementation that significantly accelerates both random forest learning and prediction for image ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013